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Abstract

In this paper we simulate a special type of Stefan problem in large-scale superconducting magnet systems in which superfluid helium
(He II) is used as the coolant for the system. Liquid helium in a narrow channel called a ‘‘cable-in-conduit” conductor (CICC) is used to
remove the heat load from the conductors. Liquid helium exhibits a phase change transition to normal helium (He I) when its temper-
ature rises above the lambda point (2.716 K under saturated vapor pressure). A simple one-dimensional model is described to analyze
this special He II/He I Stefan problem. A moving mesh technique is used to solve this model to improve the numerical efficiency com-
pared with front-tracking methods. The results illustrate the simplicity and efficiency of this model.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The 45-Tesla Hybrid Magnet System of the National
High Magnetic Field Laboratory (NHMFL) provides
researchers with the highest steady DC magnetic field avail-
able anywhere in the world today [1,2]. The superconduc-
ting magnet was designed with superfluid helium (He II)
as the coolant and the magnet coils are wound with a spe-
cial type of conductor, namely, a cable-in-conduit conduc-
tor (CICC). Stainless steel is used as the conduit to contain
the coolant and support mechanical loads (large Lorentz
force produced by the high magnetic field), superconduc-
ting strands are set inside the conduit, and stagnant super-
fluid helium fills the interstices inside of the conduit [1]. The
temperature of the superfluid helium in the cryostat vessel
is set to 1.6–1.8 K [2,3]. The superfluid helium exhibits very
special properties, such as excellent thermal conductivity
0017-9310/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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(�1000 times of that of copper), no viscosity under certain
conditions, and Gorter–Mellink law of heat conduction
etc., [8]. Because of the high cost associated with the design
and construction, the magnet system is designed from the
outset as a user facility rather than experimental equip-
ment. Due to the difficulties of effective and accurate mea-
surement of the temperature and pressure in the CICC
channel, modeling of the flow and heat transfer of helium
is an important aspect during design. Of particular impor-
tance is the simulation of ‘‘quench”, the sudden loss of
superconductivity, an event requiring special protective
measures in any large-scale magnet. Development of
numerical model for superfluid helium stems from the need
for accurate analysis of the thermal processes in the CICC
to better explain the observations from coil voltage taps
and various external temperature sensors and pressure
transducers.

In the past decades, most analytical, numerical, or
experimental works on superfluid helium flow and heat
transfer has focused on smooth rectangular chambers or
channels [4–7]. Kashani et al. [8] simulated 1D forced
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convection heat transfer in He II in a smooth channel.
Kitamura et al. [9] used a 2D model to analyze transient
heat transfer in He II. Ueta et al. [10] experimentally dem-
onstrated the k-phase transition between He II and He I
induced by shock compression. Tatsumoto et al. [11,12]
obtained 2D simulation results of steady-state and tran-
sient heat transfer of He II in a duct. Due to the compli-
cated structure in the CICC, reports of numerical or
experimental results on flow and heat transfer in He II
are very scarce. Bottura et al. [13] used a quasi-1D model
to simulate He II flow and heat transfer in the CICC.
Mao et al. [14] analyzed the k-phase transition between
He II and He I in the CICC. Accurate simulation of the
k-phase transition depends on two aspects. First, precise
evaluation of a wide range of heat load such as AC losses,
joint losses, and index heating which are deposited to liquid
helium [3,15]. Second, an effective method is needed to
track the helium k-phase transition correctly.

The helium k-phase transition (He II/He I moving front)
problem can be regarded as a special liquid/liquid phase
transition. The transition is a second-order phase transition
without latent heat, which means there is no discontinuity
in the entropy across the k-phase line [16]. Further, the spe-
cific heat of liquid helium has a logarithmic infinity at the
k-phase temperature Tk. However, the enthalpy of helium
is continuous cross the lambda point.

There are a number of numerical algorithms available to
deal with moving boundary problems, such as front-track-
ing methods [17], fixed grid methods [18], and phase field
method [19]. Front-tracking methods need to calculate
the phase change fronts explicitly at each time step.
Interpolation is usually used near the fronts. It is straight-
forward, but it may sometimes be difficult or even impossi-
ble to track the moving front directly. The Enthalpy
method is a kind of fixed grid method that avoids calculat-
ing the moving front explicitly. The position appears,
a posteriori, is a key feature of this method. Phase field
methods, based on Landau–Ginzburg theory instead of
the enthalpy function, avoid the need to explicitly track
the moving interface by front-track methods. In this paper
a simple enthalpy method is used to solve the He II/He I
moving front problem.

The objective of this study is to apply a moving grid
algorithm that uses the enthalpy method to improve the
computing efficiency of the simulation of the He II/He I
transition. In order to obtain high resolution, a large num-
ber of mesh points is required in the high gradient region.
The mesh does not need to be as fine far away from the
interface where the temperature is smooth. A simple phys-
ical model will be introduced in Section 2, a moving mesh
method is described in Section 3, followed by numerical
implementation and simulation results in Sections 4 and 5.

2. Modeling of helium transition in a CICC

The behavior of superfluid helium (He II) has been mod-
eled as a mixture of superfluid component and normal fluid
component, called a two-fluid model. The superfluid
component carries no entropy and has no viscosity. As
the temperature decreases the concentration of superfluid
component increases so that at 1 K the normal fluid consti-
tutes only 1% of the total [8]. In many engineering applica-
tions involving He II, this two-fluid model can be simplified
by assuming single phase that is separated by the helium
transition point, namely, the lambda temperature Tk. In
the CICC channel, the time evolution of the temperature
of the conductors and liquid helium and the He II/He I
transition are our main interests. Basic assumptions about
the flow are made as follows [14]:

(1) Only one-dimensional heat conduction along the lon-
gitudinal direction is considered. This is a reasonable
approximation for the large length/diameter ratio of
a CICC,

(2) Convection effects are neglected. The helium is stag-
nant initially and flow induced by the heat distur-
bance is relative small during the He II/He I phase
transition,

(3) The influence of gravity is neglected,
(4) He II has excellent thermal conductivity; the contri-

bution from conductors (superconductor plus cop-
per) are not taken into account in He II region,

(5) He I has very poor heat conductivity; the copper
(conductor) is the main contribution to the conduc-
tion of heat when the temperature is above the
lambda point, and

(6) Very good insulation between layer-to-layer or turn-
to-turn of coils in magnets in which it is a reasonable
choice to apply 1-D pipe filled with stagnant helium
to analyze thermal behavior of wound solenoids.

The heat conduction in He II obeys the Gorter–Mellink
law [16], viz.:

qx ¼ �KðdT=dxÞ1=3 ð1Þ
where K = (f�1(T,p))1/3 is the equivalent thermal conduc-
tivity of He II that can be written as a function of temper-
ature and pressure.

The energy balance adding the corresponding heat gen-
eration terms becomes [14]:
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where the subscript [ ]Cu and [ ]He refer to copper in the con-
ductor and helium, respectively, q(x,t) is the source includ-
ing the AC losses, the index heating, and the heat transfer
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between two adjacent CICCs. The term s(t) refers to the
location of the He II/He I front. DcHe is the difference of
helium specific heat across the front. For the regions where
the temperature goes above the lambda point, the energy
balance equation becomes a classic Fourier heat conduc-
tion. The term qc represents the equivalent heat capacity
of liquid helium plus copper. Its definition is qc =
AHe(qc)He/A + ACu(qc)Cu/A. Tb is the clamped helium bath
temperature (1.8 K), and Tk is the superfluid transition
(2.176 K under saturated vapor pressure). In the absence
of heat generation due to compressibility or viscous
dissipation, Eqs. (2)–(6) are suitable for the description of
a Stefan phase change problem [17].

The heat balance Eq. (4) is required for several reasons.
First, a new variable s(t) is introduced explicitly. Secondly,
a very special property shown in Eq. (4) is that the heat
capacities are not continuous when crossing the k-phase
transition. Third, the large ‘‘jump” of heat capacities of
helium across lambda point requires accurate estimation
of He II/He I front. Even though Eqs. (2) and (3) are phys-
ically proper definite with well-posed initial and boundary
conditions, the main concern in this study is to improve the
resolution of He II/He I front without losing of computa-
tional efficiency. On the moving front, the temperature is
fixed (because of constant pressure) and the Stefan condi-
tion (4) is satisfied for the heat balance. The jump in the
heat capacities of the helium, qHeDcHe, makes it difficult
to evaluate the moving front accurately. The enthalpy
method is used to avoid solving the Stefan condition explic-
itly, as it was done in the front-tracking method before [14].

The use of the enthalpy method has a detailed introduc-
tion by Crank [17] and other researchers [20,21]. The pro-
cedure is to introduce an enthalpy or the total heat content
function, H(T) that consists of the specific sensible heat and
the latent heat required for a phase change. The definition
of the enthalpy function is:

HðT Þ ¼
R T

T 0
cHe-IIðhÞdh T < T kR T

T 0
cHe-IðhÞdh T k < T

8<
: ð7Þ

where cHe is not continuous crossing the lambda point Tk.
The enthalpy definition by Eq. (7) is under constant pres-
sure condition which corresponds to the specific enthalpy
of helium in this study. The values of specific enthalpy of
helium under constant pressure can be obtained from a
computer code HEPAK [25]. The He II/He I moving front
problem (2)–(4) can be recast as a single equation in terms
of the specific enthalpy:

q
oH
ot
¼ r � ðKrT Þ þ qðx; tÞ ð8Þ

where K ¼ K1 T < T k

K2 T k < T

�
. The thermal conductivity K1 is

used by Bottural et al. [13] analogously to the classic
Fourier thermal conductivity. The enthalpy function in
the definition (7) differs from the conventional definition,
which includes the latent heat term [18,20]. The biggest
advantage of the enthalpy method is that it avoids the main
difficulty of front-tracking methods. Instead, the position
of the moving boundary has to be determined in retrospect
by inspection of the computed values of H and T.

Eqs. (7) and (8) represent a one-dimensional, two-fluid
model from which the temperature evolution in the CICC
can be calculated. It is a non-linear system of partial differ-
ential equations requiring numerical solution.

3. Moving grid method

There are several ways to improve the accuracy of the
enthalpy method; the moving grid method is adopted in
this paper. The success of any numerical solution of mov-
ing front problems requires that the interfacial region be
well resolved. The computational grid mesh does not need
to be fine uniformly the computational domain. Moving
grid methods are relatively easy to implement and a good
way to improve the accuracy of the solution in steep gra-
dient regions. The computation of the grid points is based
on the equidistributing principle [21]. In practice, a mon-
itor function is chosen to follow the change of the solu-
tion over time. A popular selection for problems with
steep gradients is a scaled arc-length function of the solu-
tions such as [22],

MðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a

oH
ox

� �2
s

a > 0; ð9Þ

where a is a user-chosen parameter. Unfortunately this
function is not analytical integrable and unsuitable for
multi-phase problems. Hence, this equidistribution princi-
ple has to be approximated using quadratures. So we con-
sider to equidistribute according to the monitor function
[23]:

MðxÞ ¼ 1þ l1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

2ðx� sÞ2 þ 1
q : ð10Þ

where the parameters l1 and l2 are positive constants to
control the smoothness and clustering of the grid around
the front s(t). The function (10) is analytically integrable
and the set of grid points {xj} is the solution of the follow-
ing scalar non-linear equations [24]:
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for j ¼ 1; 2; . . . ;N � 1: ð11Þ

The solution of (11) is a trivial step; for example, it can
be solved using Newton–Raphson iterative method. The
advantage of this choice of the monitor function is that it
gives rise to smooth mesh trajectories and automatically
clusters mesh points around steep gradient regions.
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4. Numerical algorithm

There are several choices of numerical discretization
approaches to solve Eqs. (7) and (8), such as Galerkin
weighted residual finite element method, finite volume
method and finite difference method. We apply the Method
of lines (MOL) on spatial derivatives and forward Euler
scheme to solve the ordinary differential equations (ODEs)
obtained from MOL in time. To this point, we choose cen-
tral finite difference in space. In order to incorporate the
moving grid method a semi-Lagrangian formulation of
Eq. (8) is written in the form:

_H � _x
oH
ox
¼ o
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oT
ox

� �
þ qðx; tÞ ð12Þ

where _H and _x denote the derivatives with respect to time in
a Lagrangian coordinate frame. A constant time step and
adaptive grid size are denoted by Dt = tn � tn�1 and hn
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Dirichlet boundary conditions are imposed at the two ends
x = xL and x = xR namely:

T nþ1
0 ¼ T b ð14Þ

T nþ1
N ¼ T b ð15Þ

and Eq. (13) are applied for j = 1, . . . ,N � 1. The complete
algorithm is to solve (11) and (13) at each time step simul-
taneously as a large algebraic system. A more efficient
approach is to solve the mesh Eq. (11) independently.
Decoupling enables the use of iterative methods with differ-
ent tolerances to determine the grid and solution. A com-
plete algorithm is given as follows:

(1) Predict the initial position of the moving front. The
initial condition of the He II/He I phase change prob-
lem is s(t = 0) = 0.

(2) Solve mesh Eq. (11) to obtain the grid points fxnþ1
j;s g.

(3) Solve the governing Eq. (13) for temperature fT nþ1
j;s g,

and then determine the moving front position sD,s+1

by linear interpolation for the temperature Tk.
(4) Compare the tolerance of the front position at two

adjacent iterations; otherwise go to step (2).

This algorithm avoids solving the Stefan condition explic-
itly. The iteration procedure is also straightforward. Usu-
ally the tolerance of the mesh iteration is set to 10�3.
More discussions for the convergence of the solution for
Stefan problems can be found in Crank [17].
5. Numerical results and discussion

In this paper we discuss a helium evolution problem in
which the CICC channel is presumed to be symmetric
about the origin, and we only perform the analysis on half
of the CICC. In this study, we simulate coil ‘‘A” of super-
conducting outset of 45-T hybrid magnet system. Dimen-
sions of CICC and other mechanical parameters can be
found in [3]. To compare the numerical results with other
methods such as the front tracking method [14], 400 grid
points were used to discretize the channel with length of
114.7 m. Time step is determined by the numerical stability
of explicit schemes and the accuracy requirement for para-
bolic problems with large non-linear source terms. The
time step is fixed Dt = 1.0 � 10�5. To test the convergence
of the numerical solution a Dt = 5.0 � 10�6 is also use for
moving grid method and front-tracking method. The min-
imum mesh size in moving grid method is in the same order
of magnitude with that for front-tracking method. The
smaller size of meshes the more accurate the moving front
tracking. The initial and boundary conditions are given as
follows:

T b¼ 1:8 K; T ðx;0Þ¼ 1:8 K; sðx;0Þ¼ 0;

ACu=A¼ 54:25 mm2=104:55 mm2¼ 0:519

L¼ 114:7 m; _I ¼ 2:5–5:0 A=s; T k¼ 2:168 K; Bmax¼ 15:3 T;

Imax¼ 10 kA; P ¼ 1:0�105Pa; v¼ 0:0 m=s

In the above, pressure is constant and Tk = 2.168K is the
helium Lambda point under 0.1 MPa pressure. The den-
sity, specific heat, thermal conductivity, and enthalpy of
helium are all temperature-dependent and highly non-
linear parameters. They are computed using the computer
code HEPAK [25]. Fig. 1 shows that the enthalpy of helium
is continuous through the He II/He I front (the k-transi-
tion), but exhibits a jump at the boiling temperature of
helium (4.22 K at 0.1 MPa pressure) because of the latent
heat of helium. Fig. 2 shows a large gradient in the heat
capacity of the helium across the He II/He I front, which
makes the computation difficult. Effective front-tracking
needs a discretization of the first and second derivatives
across the He II/He I front, otherwise large numerical
errors and numerical uncertainties are produced. The en-
thalpy method used here computes the He II/He I front
a posteriori. It overcomes the numerical difficulty of discret-
ization of the heat balance equation for the He II/He I
front.

The evolution of helium temperature and He II/He I
transition depends on the external heat deposited to the
helium. Two main heat sources in a CICC channel are
the AC losses and index heating, both of which are non-
linear functions of the magnetic field B and the operating
current I. The AC losses stem from the change of operating
electric current in the conductor while index heating is an
exponential function of the ratio of operating current vs.
critical current of the conductor. Different current ramping



Fig. 1. The enthalpy of helium as a function of temperature and pressure is continuous across the lambda point (2.168 K at 0.1 MPa pressure in the inset
diagram) and has a discontinuity (latent heat) at the boiling point (4.22 K at 0.1 MPa pressure).

Fig. 2. The specific heat of helium at a constant pressure as a function of temperature. Two discontinuities appear across the k-point (He II/He I) and the
boiling point (supercritical Helium).
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rates produce different AC losses. The operating current is
set up to 10 kA. The AC losses become largest at t = 500 s
for a 2.5 A/s ramping rate. The heat generation rate is up
to a maximum value of 0.0122 w/m at the innermost layer
of coil ‘‘A”. AC losses decrease after 500 s and become zero
if the current ramping process ends [15]. At the initial time,
the CICC channel is assumed to have static He II every-
where, and a constant temperature (1.8 K) cryostat vessel
is connected to the CICC channel (the helium pressure is
a constant that is adjustable through valves).
Figs. 3 and 4 show the evolution and distribution of the
helium temperature in a CICC channel under the He II
phase. At the early time the electrical current and the mag-
netic field are small (t < 100 s), and the AC losses increase
slowly. Fig. 3 shows that the temperature at the middle
increases first and slowly propagates to the ends of the
CICC channel. After 200 s the AC losses increase rapidly
because of the increase in the magnetic field and the electri-
cal current. The large heat source accelerates the increase
of the temperature of the He II (t = 200 s and t = 300 s



Fig. 3. The distribution and history of helium temperatures below the
lambda point at the earlier ramping procedure, and the current ramping
rate is 2.5 A/s.

Fig. 4. The distribution and history of helium temperatures below the
lambda point at the middle ramping procedure where the current ramping
rate is 2.5 A/s.

Fig. 5. The evolution of helium temperature in the CICC channel
showing, helium temperature increases very quickly above the lambda
point. It is clear that the He II/He I phase change fronts are moving
towards the two ends.
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in Fig. 3). The evolution of the He II temperature becomes
slower after t = 500 s than that at t = 200 s due to the
decrease in AC losses and a larger heat capacity of He II
near the lambda point. Fig. 4 shows that the temperature
of He II decreased with time (t < 4000 s). Due to the
decrease of the heat deposit, the amount of heat removed
by the He II surpasses that deposited by external heat
sources. The cooling system is still in the safe zone and will
retain the initial condition if current ramping ends at
t = 3500 s (Fig. 4). At the later time the operating current
becomes very large and the AC losses are small. However,
the index heating cannot be negligible. The index heating is
the main heat ‘‘load” to drive the temperature of the He II
upward again (see the line t = 4000 s in Fig. 4). The system
is more sensitive to heat capacities of helium at this stage.
Fig. 5 shows the k-transition of helium temperature after
the operating current reaches 10 kA (a ramping rate of
2.5 A/s is used) for the superconducting magnet system.
The temperature of He II increases, and the degradation of
heat conduction makes the system more unstable. The
helium temperature gives rise to values above the lambda
point in the middle position first, and He II transforms to
He I. The figure shows a clear He II/He I phase front during
the transition (the pressure is a constant at the cryostat and
the temperature Tk = 2.168 K under 0.1 MPa of pressure).
Due to very poor heat conductivity of the He I, the removal
of the heat load depends on the copper in the CICC channel;
the rate of accumulation is faster than the rate of removal
from the system. The helium temperature goes up faster than
that in the single He II phase. As the helium temperature
rises above 4.22 K (under 0.1 MPa of pressure), the heat
transfer enters the boiling phase, and the system will lose
its thermal stability completely. When the electrical current
ramping process is faster than its stability margin, the helium
cannot remove the heat deposition from the two ends of the
CICC channel, which makes the situation more impaired. It
is very important to note that two symmetrical He II/He I
moving fronts are speeding up to the ends because more
and more He II changes to He I in the CICC channel.
Fig. 5 shows that the propagation of this He II/He I front
could reach to 0.11 m/s even higher.

Figs. 6 and 7 demonstrate the grid tracking of the He II/
He I front during the temperature evolution in the CICC
channel. It demonstrates that the grid points are smoothly
advancing with the physical solutions. Two parameters, l1

and l2, are used to adjust the clustering and smoothness of
the grid points. Larger l1 results in a denser distribution of
grid points with which to track the He II/He I front. There-
fore the moving grid method can improve the efficiency
of tracking the moving front. Otherwise a complicated



Fig. 6. The trajectory He II/He I moving front by the moving grid
method: l1 = 10, and l2 = 1000.

Fig. 7. The trajectory He II/He I moving front by the moving grid
method: l1 = 50, and l2 = 1000. More grid points are concentrating near
the moving interface.

Fig. 8. Comparison of two runs for the recovery and runaway (‘‘quench”)
of helium in the CICC channel. The recovery time is more than 1 h and
less than one and a half hour.

Fig. 9. The temperature evolution providing an explanation of the
thermal stability of He II cooled magnets in the presence of current
ramping (Jc: critical current density, Jop: operating current density).
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adaptive mesh refine (AMR) is required in front-tracking
methods. The overhead of this moving mesh method is
an additional grid equation to be solved at each time step.

The trajectories of the He II/He I moving front are
recorded from the beginning (He I first occupied in the
middle position of the channel) to the time when He I fills
90% of the channel. The numerical results also show that
the He II/He I front is moving non-linearly to the ends
of the CICC channel in several tens of seconds. The moving
front propagates faster at the early phase than that at the
later phase. A possible reason is that constant pressure
and clamped He II temperature are assumed at the ends,
and this acts as a large reservoir or buffer to absorb the
huge quantity of heat from the He I region. When the mov-
ing front approaches the end of the channel (90% of the
channel is occupied with He I), the propagation of He II/
He I becomes slower and the helium temperature in the
central area of the channel rises rapidly.

Fig. 8 shows two runs showing the evolution of the
helium enthalpy. One run is in the thermal stability margin.
There, the helium enthalpy decreases as before because of
the powerful heat transfer ability of He II. The recovery
time is more than one hour and less than one and a half
hours, which is in very good agreement with practical
observation [3]. As the external heat surpass the thermal
stability margin, He II changes to He I and the cooling
ability degenerates. This results in quench of the supercon-
ductors. Fig. 9 gives a detail explanation of a thermal sta-
bility margin. When the external disturbance is large, the
temperature of helium rises to a value above the k-point,
even after the conclusion of the electrical current ramp.
The external heat (index heating) continues pushing the
temperature rise, and finally arrives at the liquid/vapor line



Fig. 10. The recovery of helium temperature by the front-tracking method
and the moving grid method. Experimental observation is that it takes 30–
35 min (1800–2100 s) to go back to normal operating temperature (1.8 K).
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of helium (4.22 K under 0.1 MPa of pressure) and the sys-
tem cannot recover any more.

Fig. 10 shows the recovery time of the helium tempera-
ture by two methods: front-tracking and moving grid
techniques. As the helium temperature is driven above
the k-point, all external heat sources are removed and the
system will return to its original state. Four thousand sec-
onds, or 1 h and 15 min later, the temperature goes back
to 1.83 K (the cryostat is fixed at 1.8 K) by the front-
tracking method. It takes only 50 min for the tempera-
ture to decrease to 1.825 K when moving grid method is
used. The actual operating observation shows that in 35–
40 min the system can completely recover to its initial con-
dition. This suggests that the enthalpy method used with
the moving grid technique can obtain higher accuracy than
tracking the He II/He I front by a front-tracking method.
6. Conclusion

A simple and efficient helium transient heat transfer
model in a CICC has been proposed and implemented.
Numerical experiments were carried out to study the evolu-
tion behavior of the temperature of the conductors and He
II/He I moving fronts. The enthalpy method and an analyt-
ically integrable moving grid technique are used to improve
the resolution of the He II/He I front. It avoided tracking
the He II/He I front explicitly. The method improved the
solutions that arise due to the difficulties and inaccuracies
of calculation of the specific heat of liquid helium. The sim-
ulation results are compared to experimental observations
and are shown to be in very good agreement. The merits
of this model are its simplicity and ability to correctly track
the temperature evolution of the column of helium in the
CICC, without the complicated computation of the helium
flow and coupled heat transfer between solid materials and
the liquid helium.
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